Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Genes (Basel) ; 15(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38540362

RESUMO

Hereditary hemorrhagic telangiectasia (HHT), also called Rendu-Osler syndrome, is a group of rare genetic diseases characterized by autosomal dominance, multisystemic vascular dysplasia, and age-related penetrance. This includes arteriovenous malformations (AVMs) in the skin, brain, lung, liver, and mucous membranes. The correlations between the phenotype and genotype for HHT are not clear. An HHT Chinese pedigree was recruited. Whole exome sequencing (WES) analysis, Sanger verification, and co-segregation were conducted. Western blotting was performed for monitoring ENG/VEGFα signaling. As a result, a nonsense, heterozygous variant for ENG/CD105: c.G1169A:p. Trp390Ter of the proband with hereditary hemorrhagic telangiectasia type 1 (HHT1) was identified, which co-segregated with the disease in the M666 pedigree. Western blotting found that, compared with the normal levels associated with non-carrier family members, the ENG protein levels in the proband showed approximately a one-half decrease (47.4% decrease), while levels of the VEGFα protein, in the proband, showed approximately a one-quarter decrease (25.6% decrease), implying that ENG haploinsufficiency, displayed in the carrier of this variant, may affect VEGFα expression downregulation. Pearson and Spearman correlation analyses further supported TGFß/ENG/VEGFα signaling, implying ENG regulation in the blood vessels. Thus, next-generation sequencing including WES should provide an accurate strategy for gene diagnosis, therapy, genetic counseling, and clinical management for rare genetic diseases including that in HHT1 patients.


Assuntos
Telangiectasia Hemorrágica Hereditária , Humanos , Endoglina/genética , Endoglina/metabolismo , Telangiectasia Hemorrágica Hereditária/genética , Genótipo , Heterozigoto , China
2.
Exp Ther Med ; 27(2): 52, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38234609

RESUMO

Neuropilin 1 (NRP1/CD304) is a typical membrane-bound co-receptor for vascular endothelial growth factor, semaphorin family members and viral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, NRP1 expression levels across cancer types and the potential role of SARS-CoV-2 infection in patients with cancer are not clear. Online databases, such as The Cancer Genome Atlas database of Human Protein Atlas, Gene Expression Profiling Interactive Analysis and cBioPortal were used for the expression analysis in this study. Immunohistochemical (IHC) staining for NRP1 was performed in the tissues of patients with non-small cell carcinoma. As a result, it was found that NRP1 mRNA and protein expression levels were highest in the female reproductive tissues and the respiratory system, specifically in the nasopharynx, bronchus and fallopian tube, as well as in adipocytes, hepatic stellate cells, Sertoli cells, endothelial cells and dendritic cells. IHC showed that the NRP1 protein was mainly localized to the cytoplasm and membrane in the tissues of patients with non-small cell carcinoma, demonstrating its role in lung infection by SARS-CoV-2, due to invasion of cell membranes by the virus. Levels of NRP1 mRNA were significantly increased in lymphoid neoplasm diffuse large B-cell lymphoma, esophageal carcinoma, glioblastoma multiforme, head and neck squamous cell carcinoma, kidney renal clear cell carcinoma (KIRC), pancreatic adenocarcinoma, stomach adenocarcinoma and thymoma, and significantly decreased in cervical squamous cell carcinoma and endocervical adenocarcinoma, kidney chromophobe, lung squamous cell carcinoma, ovarian serous cystadenocarcinoma, uterine corpus endometrial carcinoma and uterine carcinosarcoma, compared with corresponding healthy tissues in pancancer, indicating roles for viral invasion in most cancer types. Moreover, low NRP1 expression was significantly associated with long overall survival (OS) time in adrenocortical carcinoma, brain lower grade glioma, stomach adenocarcinoma and uveal melanoma, but with short OS time in KIRC only. The ENST00000374867.6 (NRP1-202) isoform is most highly expressed in most cancer types and thus could be involved in tumorigenesis and SARS-CoV-2 invasion in cancer patients. NRP1 may be involved in SARS-CoV-2 invasion in patients with cancer, including those with lung cancer.

3.
J Cell Mol Med ; 28(1): e18004, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37864300

RESUMO

Nonsyndromic hearing loss (NSHL) is a genetically diverse, highly heterogeneous condition characterised by deafness, and Gasdermin E (GSDME) variants have been identified as directly inducing autosomal dominant NSHL. While many NSHL cases associated with GSDME involve the skipping of exon 8, there is another, less understood pathogenic insertion variant specifically found in Chinese pedigrees that causes deafness, known as autosomal dominant 5 (DFNA5) hearing loss. In this study, we recruited a large Chinese pedigree, conducted whole-exome and Sanger sequencing to serve as a comprehensive clinical examination, and extracted genomic DNA samples for co-segregation analysis of the members. Conservation and expression analyses for GSDME were also conducted. Our clinical examinations revealed an autosomal dominant phenotype of hearing loss in the family. Genetic analysis identified a novel insertion variant in GSDME exon 8 (GSDME: NM_004403.3: c.1113_1114insGGGGTGCAGCTTACAGGGTGGGTGT: p. P372fs*36). This variant is segregated with the deafness phenotype of this pedigree. The GSDME gene was highly conserved in the different species we analysed, and its mRNA expression was ubiquitously low in different human tissues. In conclusion, we have successfully identified a novel pathogenic insertion variant of GSDME in a Chinese pedigree that causes deafness, shedding light on the genetic basis of hearing loss within this specific family. Our findings expand the spectrum of known variants associated with GSDME-related deafness and may further support both the underlying gain-of-function mechanism and functional associations of GSDME hearing loss variants.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Humanos , Linhagem , Perda Auditiva/genética , Surdez/genética , China , Mutação , Perda Auditiva Neurossensorial/genética
4.
Int J Legal Med ; 138(2): 329-350, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37770641

RESUMO

At present, epigenetic markers have been extensively studied in various fields and have a high value in forensic medicine due to their unique mode of inheritance, which does not involve DNA sequence alterations. As an epigenetic phenomenon that plays an important role in gene expression, non-coding RNAs (ncRNAs) act as key factors mediating gene silencing, participating in cell division, and regulating immune response and other important biological processes. With the development of molecular biology, genetics, bioinformatics, and next-generation sequencing (NGS) technology, ncRNAs such as microRNA (miRNA), circular RNA (circRNA), long non-coding RNA (lncRNA), and P-element induced wimpy testis (PIWI)-interacting RNA (piRNA) are increasingly been shown to have potential in the practice of forensic medicine. NcRNAs, mainly miRNA, may provide new strategies and methods for the identification of tissues and body fluids, cause-of-death analysis, time-related estimation, age estimation, and the identification of monozygotic twins. In this review, we describe the research progress and application status of ncRNAs, mainly miRNA, and other ncRNAs such as circRNA, lncRNA, and piRNA, in forensic practice, including the identification of tissues and body fluids, cause-of-death analysis, time-related estimation, age estimation, and the identification of monozygotic twins. The close links between ncRNAs and forensic medicine are presented, and their research values and application prospects in forensic medicine are also discussed.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , Masculino , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Circular , RNA de Interação com Piwi , RNA não Traduzido , Medicina Legal
5.
Microorganisms ; 11(12)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38138098

RESUMO

NRP1/CD304 is a typical membrane-bound co-receptor for the vascular endothelial cell growth factor (VEGF), semaphorin family members, and viral SARS-CoV-2. Cordycepin (CD) is a natural product or active gradient from traditional Chinese medicine (TCM) from Cordyceps militaris Link and Ophiocordyceps sinensis (Berk.). However, NRP1 expression regulation via CD in cancers and the potential roles and mechanisms of SARS-CoV-2 infection are not clear. In this study, online databases were analyzed, Western blotting and quantitative RT-PCR were used for NRP1 expression change via CD, molecular docking was used for NRP/CD interaction, and a syncytial formation assay was used for CD inhibition using a pseudovirus SARS-CoV-2 entry. As a result, we revealed that CD inhibits NRP1 expressed in cancer cells and prevents viral syncytial formation in 293T-hACE2 cells, implying the therapeutic potential for both anti-cancer and anti-viruses, including anti-SARS-CoV-2. We further found significant associations between NRP1 expressions and the tumor-immune response in immune lymphocytes, chemokines, receptors, immunostimulators, immune inhibitors, and major histocompatibility complexes in most cancer types, implying NRP1's roles in both anti-cancer and anti-SARS-CoV-2 entry likely via immunotherapy. Importantly, CD also downregulated the expression of NRP1 from lymphocytes in mice and downregulated the expression of A2AR from the lung cancer cell line H1975 when treated with CD, implying the NRP1 mechanism probably through immuno-response pathways. Thus, CD may be a therapeutic component for anti-cancer and anti-viral diseases, including COVID-19, by targeting NRP1 at least.

6.
Heliyon ; 9(12): e23005, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125507

RESUMO

The Tibetan people are ancient and populous, constituting the seventh-largest of the fifty-five ethnic minority groups in China. The Ngawa Tibetan and Qiang Autonomous Prefecture (NTQAP), situated on the border of northwest and southwest China, has its distinct group relationships. Short tandem repeat (STR) is extremely polymorphic and extensively used in the application of forensic medicine and population genetics. However, it is not clear the genetic information including linkage disequilibrium (LD) by 36 autosomal STR (A-STR) markers in the Tibetan group from NTQAP. The Tibetan population from NTQAP of southwest China was examined for 36 A-STR loci in the research. Every marker across the 36 A-STR loci was consistent with Hardy-Weinberg equilibrium (HWE). The results of the calculation revealed that the total discrimination power (TDP) is 1-2.2552 × 10-42 and the cumulative probability of exclusion (CPE) is 1-1.3031 × 10-16. Subsequently, a total of 345 alleles with allelic frequencies ranging from 0.00382 to 0.55343 were identified, and the allelic numbers varied from 5 in both the TH01 and TPOX markers to 28 in the SE33 locus. The Ngawa Tibetan population, along with other Chinese populations, exhibited influences from historical factors and regional distribution, as indicated by the results of population genetics analysis. We thus first explored the genetic characteristics and correlated forensic parameters of the 36 A-STR markers in NTQAP to fill the gap in the Tibetan population. It was discovered that these 36 autosomal STR markers supplemented forensic STR databases and offered extremely valuable polymorphisms for Chinese forensic applications, such as parentage testing and personal identification. Moreover, the study would contribute additional information regarding the substructure and diversity in the Chinese population.

7.
Genes (Basel) ; 14(10)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37895253

RESUMO

Han is the largest of China's 56 ethnic groups and the most populous ethnic group in the world. The Luzhou region is located in southwest China, at the junction of three provinces. The unique historical factors contribute to the genetic polymorphism information. Short tandem repeats (STRs) are highly polymorphic, but the polymorphism of the Y chromosomal STRs (Y-STRs) loci in the Luzhou region is still unclear. It is of great significance to provide Y-STRs genetic data for the Han population from the Luzhou areas of southwest China. A total of 910 unrelated male individuals of the Han population from the Luzhou area were recruited, and 24 Y-STRs were analyzed. The population structure and phylogenetic relationships were compared with those of another 11 related Han populations. A total of 893 different haplotypes were achieved from 910 samples, of which 877 (98.21%) haplotypes were unique. Haplotype diversity and discrimination were 0.999956 and 0.981319, respectively. The lowest genetic diversity of DYS437 is 0.4321, and the highest genetic diversity of DYS385a/b is 0.9642. Pair-to-pair genetic distance and relative probability values indicate that Luzhou Han people are close to Sichuan Han people, Guangdong Han people, and Hunan Han people, which is consistent with geographical distribution, historical influence, and economic development. The 24 Y-STR markers of the southwest Luzhou Han population were highly polymorphic, which provided us with genetic polymorphism information and enriched the population genetic database. Therefore, it is of great value to our forensic applications and population genetics research.


Assuntos
Cromossomos Humanos Y , População do Leste Asiático , Humanos , Masculino , Filogenia , Cromossomos Humanos Y/genética , Polimorfismo Genético , Repetições de Microssatélites/genética , China
9.
Cancers (Basel) ; 15(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37835417

RESUMO

MicroRNA (miRNA) are small noncoding RNAs that play vital roles in post-transcriptional gene regulation by inhibiting mRNA translation or promoting mRNA degradation. The dysregulation of miRNA has been implicated in numerous human diseases, including cancers. miR-34 family members (miR-34s), including miR-34a, miR-34b, and miR-34c, have emerged as the most extensively studied tumor-suppressive miRNAs. In this comprehensive review, we aim to provide an overview of the major signaling pathways and gene networks regulated by miR-34s in various cancers and highlight the critical tumor suppressor role of miR-34s. Furthermore, we will discuss the potential of using miR-34 mimics as a novel therapeutic approach against cancer, while also addressing the challenges associated with their development and delivery. It is anticipated that gaining a deeper understanding of the functions and mechanisms of miR-34s in cancer will greatly contribute to the development of effective miR-34-based cancer therapeutics.

10.
Molecules ; 28(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446810

RESUMO

TQFL12 is a novel derivative designed and synthesized on the basis of Thymoquinone (TQ) which is extracted from Nigella sativa seeds. We have demonstrated that TQFL12 was more effective in the treatment of TNBC than TQ. In order to directly reflect the acute toxicity of TQFL12 in vivo, in this study, we designed, synthesized, and compared it with TQ. The mice were administered drugs with different concentration gradients intraperitoneally, and death was observed within one week. The 24 h median lethal dose (LD50) of TQ was calculated to be 33.758 mg/kg, while that of TQFL12 on the 7th day was 81.405 mg/kg, and the toxicity was significantly lower than that of TQ. The liver and kidney tissues of the dead mice were observed by H&E staining. The kidneys of the TQ group had more severe renal damage, while the degree of the changes in the TQFL12 group was obviously less than that in the TQ group. Western blotting results showed that the expressions of phosphorylated levels of adenylate-activated protein kinase AMPKα were significantly up-regulated in the kidneys of the TQFL12 group. Therefore, it can be concluded that the acute toxicity of TQFL12 in vivo is significantly lower than that of TQ, and its anti-toxicity mechanism may be carried out through the AMPK signaling pathway, which has a good prospect for drug development.


Assuntos
Fígado , Transdução de Sinais , Camundongos , Animais , Benzoquinonas/uso terapêutico , Proteínas Quinases Ativadas por AMP/metabolismo
11.
PLoS One ; 18(7): e0285806, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37432950

RESUMO

To discover vulnerabilities associated with dermokine (DMKN) as a new trigger of the epithelial-mesenchymal transition (EMT) -driven melanoma, we undertook a genome-wide genetic screening using transgenic. Here, we showed that DMKN expression could be constitutively increased in human malignant melanoma (MM) and that this correlates with poor overall survival in melanoma patients, especially in BRAF-mutated MM samples. Furthermore, in vitro, knockdown of DMKN inhibited the cell proliferation, migration, invasion, and apoptosis of MM cancer cells by the activation of ERK/MAPK signaling pathways and regulator of STAT3 in downstream molecular. By interrogating the in vitro melanoma dataset and characterization of advanced melanoma samples, we found that DMKN downregulated the EMT-like transcriptional program by disrupting EMT cortical actin, increasing the expression of epithelial markers, and decreasing the expression of mesenchymal markers. In addition, whole exome sequencing was presented with p.E69D and p.V91A DMKN mutations as a novel somatic loss of function mutations in those patients. Moreover, our purposeful proof-of-principle modeled the interaction of ERK with p.E69D and p.V91A DMKN mutations in the ERK-MAPK kinas signaling that may be naturally associated with triggering the EMT during melanomagenesis. Altogether, these findings provide preclinical evidence for the role of DMKN in shaping the EMT-like melanoma phenotype and introduced DMKN as a new exceptional responder for personalized MM therapy.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Transição Epitelial-Mesenquimal/genética , Melanoma/genética , Mutação , Neoplasias Cutâneas/genética
12.
Front Oncol ; 13: 1158087, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456247

RESUMO

Introduction: In the world, the incidence of breast cancer has surpassed that of lung cancer, and it has become the first malignant tumor among women. Triple-negative breast cancer (TNBC) shows an extremely heterogeneous malignancy toward high recurrence, metastasis, and mortality, but there is a lack of effective targeted therapy. It is urgent to develop novel molecular targets in the occurrence and therapeutics for TNBC, and novel therapeutic strategies to block the recurrence and metastasis of TNBC. Methods: In this study, CTSL (cathepsin L) expression in tissues and adjacent tissues of TNBC patients was monitored by immunohistochemistry and western blots. The correlations between CTSL expressions and clinicopathological characteristics in the patient tissues for TNBC were analyzed. Cell proliferation, migration, and invasion assay were also performed when over-expressed or knocked-down CTSL. Results: We found that the level of CTSL in TNBC is significantly higher than that in the matched adjacent tissues, and associated with differentiated degree, TNM Stage, tumor size, and lymph node metastatic status in TNBC patients. The high level of CTSL was correlated with a short RFS (p<0.001), OS (p<0.001), DMFS (p<0.001), PPS (p= 0.0025) in breast cancer from online databases; while in breast cancer with lymph node-positive, high level of CTSL was correlated with a short DMFS (p<0.001) and RFS (p<0.001). Moreover, in vitro experiments showed that CTSL overexpression promotes the abilities for proliferation, migration, and invasion in MCF-7 and MDA-MB-231 cell lines, while knocking-down CTSL decreases its characteristics in MDA-MB-231 cell lines. Conclusion: CTSL might involve into the regulation of the proliferation, invasion, and metastasis of TNBC. Thus, CTSL would be a novel, potential therapeutic, and prognostic target of TNBC.

13.
Genes (Basel) ; 14(7)2023 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-37510323

RESUMO

The Han nationality is an ancient and populous people, and different places in China may have their distinct group relationships. Luzhou area, as a crossroads of several provinces in Southwest China, lacks autosomal short tandem repeat (STR) research and population genetics research. In this study, 21 autosomal STR loci were evaluated in 1959 Han-Chinese individuals from Luzhou area. There was no substantial linkage disequilibrium (LD) among the 21 autosomal STR markers, and all markers were in Hardy-Weinberg equilibrium (HWE). The total discrimination power (TDP) and cumulative probability of exclusion (CPE) of the 21 autosomal STR loci were calculated to be 1-9.8505 × 10-16 and 1-1.9406 × 10-9, respectively. There were 333 alleles for 21 STRs with allelic frequencies ranging from 0.00026 to 0.51302, and the number of alleles ranged from 7 in locus TPOX to 29 in locus Penta E. According to the results of population comparison and population differentiation, historical influences, geographical distribution, cultural integration, and economic development may have an impact on the Luzhou Han population and other Chinese populations. These 21 STR loci were found to enrich autosomal STR information in forensic databases and provide highly informative polymorphisms for our forensic practice in China, including personal identification and parentage testing.


Assuntos
População do Leste Asiático , Polimorfismo Genético , Humanos , Genética Populacional , Repetições de Microssatélites/genética , China
14.
Front Immunol ; 14: 1166680, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275848

RESUMO

Heat-shock-protein family A (Hsp70) member 5 (HSPA5), aliases GRP78 or BiP, is a protein encoded with 654 amino acids by the HSPA5 gene located on human chromosome 9q33.3. When the endoplasmic reticulum (ER) was stressed, HSPA5 translocated to the cell surface, the mitochondria, and the nucleus complexed with other proteins to execute its functions. On the cell surface, HSPA5/BiP/GRP78 can play diverse functional roles in cell viability, proliferation, apoptosis, attachments, and innate and adaptive immunity regulations, which lead to various diseases, including cancers and coronavirus disease 2019 (COVID-19). COVID-19 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which caused the pandemic since the first outbreak in late December 2019. HSPA5, highly expressed in the malignant tumors, likely plays a critical role in SARS-CoV-2 invasion/attack in cancer patients via tumor tissues. In the current study, we review the newest research progresses on cell surface protein HSPA5 expressions, functions, and mechanisms for cancers and SARS-CoV-2 invasion. The therapeutic and prognostic significances and prospects in cancers and COVID-19 disease by targeting HSPA5 are also discussed. Targeting HSPA5 expression by natural products may imply the significance in clinical for both anti-COVID-19 and anti-cancers in the future.


Assuntos
COVID-19 , Neoplasias , Humanos , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana , SARS-CoV-2/metabolismo
15.
Front Immunol ; 14: 1149986, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020558

RESUMO

SRY-box transcription factor 9 (SOX9) (OMIM 608160) is a transcription factor. The expression of SOX9 in pan-cancers and the regulation by small molecules in cancer cell lines are unclear. In the current study, we comprehensively analyzed the expression of SOX9 in normal tissues, tumor tissues and their matched healthy tissues in pan-cancers. The study examined the correlation between immunomodulators and immune cell infiltrations in normal and tumor tissues. Cordycepin (CD), an adenosine analog for SOX9 expression regulation, was also conducted on cancer cells. The results found that SOX9 protein is expressed in a variety of organs, including high expression in 13 organs and no expression in only two organs; in 44 tissues, there was high expression in 31 tissues, medium expression in four tissues, low expression in two tissues, and no expression in the other seven tissues. In pan-cancers with 33 cancer types, SOX9 expression was significantly increased in fifteen cancers, including CESC, COAD, ESCA, GBM, KIRP, LGG, LIHC, LUSC, OV, PAAD, READ, STAD, THYM, UCES, and UCS, but significantly decreased in only two cancers (SKCM and TGCT) compared with the matched healthy tissues. It suggests that SOX9 expression is upregulated in the most cancer types (15/33) as a proto-oncogene. The fact that the decrease of SOX9 expression in SKCM and the increase of SOX9 in the cell lines of melanoma inhibit tumorigenicity in both mouse and human ex vivo models demonstrates that SOX9 could also be a tumor suppressor. Further analyzing the prognostic values for SOX9 expression in cancer individuals revealed that OS is long in ACC and short in LGG, CESC, and THYM, suggesting that high SOX9 expression is positively correlated with the worst OS in LGG, CESC, and THYM, which could be used as a prognostic maker. In addition, CD inhibited both protein and mRNA expressions of SOX9 in a dose-dependent manner in 22RV1, PC3, and H1975 cells, indicating CD's anticancer roles likely via SOX9 inhibition. Moreover, SOX9 might play an important role in tumor genesis and development by participating in immune infiltration. Altogether, SOX9 could be a biomarker for diagnostics and prognostics for pan-cancers and an emerging target for the development of anticancer drugs.


Assuntos
Desoxiadenosinas , Melanoma , Humanos , Animais , Camundongos , Adenosina , Adjuvantes Imunológicos , Fatores de Transcrição SOX9
16.
BMC Med Genomics ; 16(1): 85, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095468

RESUMO

Neurofibromatosis type 1 (NF1) presents an autosomal dominant, haploinsufficient, and multisystemic disorder with patches of skin café-au-lait spots, lisch nodules in the iris, even tumors in the peripheral nervous system or fibromatous skin. In this study, a Chinese young woman who suffered from NF1 disease with first-trimester spontaneous abortion was recruited. Analysis for whole exome sequencing (WES), Sanger sequencing, short tandem repeat (STR), and co-segregation was carried out. As results, a novel, heterozygous, de novo pathogenic variant (c.4963delA:p.Thr1656Glnfs*42) of the NF1 gene in the proband was identified. This pathogenic variant of the NF1 gene produced a truncated protein that lost more than one-third of the NF1 protein at the C-terminus including half of the CRAL-TRIO lipid-binding domain and nuclear localization signal (NLS), thus leading to pathogenicity (ACMG criteria: PVS1 + PM2 + PM2). Analysis for NF1 conservation in species revealed high conservation in different species. Analysis of NF1 mRNA levels in different human tissues showed low tissue specificity, which may affect multiple organs presenting other symptoms or phenotypes. Moreover, prenatal NF1 gene diagnosis showed both alleles as wild types. Thus, this NF1 novel variant probably underlays the NF1 pathogenesis in this pedigree, which would help for the diagnosis, genetic counseling, and clinical management of this disorder.


Assuntos
Neurofibromatose 1 , Feminino , Humanos , Manchas Café com Leite/diagnóstico , Manchas Café com Leite/genética , População do Leste Asiático , Genes da Neurofibromatose 1 , Neurofibromatose 1/diagnóstico , Neurofibromatose 1/genética , Neurofibromatose 1/patologia , Neurofibromina 1/genética
18.
Int J Oncol ; 62(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36799191

RESUMO

The worldwide COVID­19 pandemic was brought on by a new coronavirus (SARS Cov­2). A marker/receptor called Dipeptidyl peptidase 4/CD26(DPP4/CD26) may be crucial in determining susceptibility to tumors and coronaviruses. However, the regulation of DPP4 in COVID­invaded cancer patients and its role on small molecule compounds remain unclear. The present study used the Human Protein Atlas, Monaco, and Schmiedel databases to analyze the expression of DPP4 in human tissues and immune cells. The association between DPP4 expression and survival in various tumor tissues was compared using GEPIA 2. The DNMIVD database was used to analyze the correlation between DPP4 expression and promoter methylation in various tumors. On the cBioPortal network, the frequency of DPP4 DNA mutations in various cancers was analyzed. The correlation between DPP4 expression and immunomodulators was analyzed by TISIDB database. The inhibitory effects of cordycepin (CD), N6, N6­dimethyladenosine (m62A) and adenosine (AD) on DPP4 in cancer cells were evaluated. DPP4 was mainly expressed in endocrine tissue, followed by gastrointestinal tract, female tissue (mainly in placenta), male tissue (mainly in prostate and seminal vesicle), proximal digestive tract, kidney, bladder, liver, gallbladder and respiratory system. In immune cells, DPP4 mRNA was mainly expressed in T cells, and its expression was upregulated in esophageal carcinoma, kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma, pancreatic adenocarcinoma, prostate adenocarcinoma, stomach adenocarcinoma, thyroid carcinoma and thymoma. However, it was downregulated in breast invasive carcinoma, kidney chromophobe, lung squamous cell carcinoma and skin cutaneous melanoma. Thus, DPP4 is involved in viral invasion in most types of cancer. The expression of DPP4 could be inhibited by CD, m62A and AD in different tumor cells. Moreover, CD significantly inhibited the formation of GFP­positive syncytial cells. In vivo experiments with AD injection further showed that AD significantly inhibited lymphocyte activating factor 3 expression. These drugs may have potential to treat COVID­19 by targeting DPP4. Thus, DPP4 may be medically significant for SARS­CoV­2­infected cancer patients, providing prospective novel targets and concepts for the creation of drugs against COVID­19.


Assuntos
Adenocarcinoma , COVID-19 , Carcinoma Hepatocelular , Neoplasias Hepáticas , Melanoma , Neoplasias Pancreáticas , Neoplasias Cutâneas , Humanos , Masculino , Feminino , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , SARS-CoV-2 , Adenosina , Pandemias , Estudos Prospectivos , COVID-19/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Imunidade
19.
Toxicol Appl Pharmacol ; 461: 116405, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36716865

RESUMO

Cancer is one of the leading causes of death worldwide, so pursuing effective and safe therapeutics for cancer is a key research objective nowadays. Doxorubicin (DOX) is one of the commonly prescribed chemotherapeutic agents that has been used to treat cancer with its antimitotic properties via inhibition of topoisomerase II (TOP2) activity. However, many problems hinder the broad use of DOX in clinical practice, including cardiotoxicity and drug resistance. Research in drug discovery has confirmed that natural bioactive compounds (NBACs) display a wide range of biological activities correlating to anticancer outcomes. The combination of NBACs has been seen to be an ideal candidate that might increase the effectiveness of DOX therapy and decreases its unfavorable adverse consequences. The current review discusses the chemo-modulatory mechanism and the protective effects of combined DOX with NBACs with a binding affinity (pKi) toward TOP2A more than pKi of DOX. This review will also discuss and emphasize the molecular mechanisms to provide a pathway for further studies to reveal other signaling pathways. Taken together, understanding the fundamental mechanisms and implications of combined therapy may provide a practical approach to battling cancer diseases.


Assuntos
DNA Topoisomerases Tipo II , Doxorrubicina , Humanos , Doxorrubicina/efeitos adversos , DNA Topoisomerases Tipo II/metabolismo , Cardiotoxicidade , Apoptose
20.
Mol Biol Rep ; 50(3): 2269-2281, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36574092

RESUMO

BACKGROUND: BSG (CD147) is a member of the immunoglobulin superfamily that shows roles for potential prognostics and therapeutics for metastatic cancers and SARS-CoV-2 invasion for COVID-19. The susceptibility of malignant cancers to SARS-CoV-2 as well as the correlations between disease outcome and BSG expression in tumor tissues have not been studied in depth. METHODS: In this study, we explored the BSG expression profile, survival correlation, DNA methylation, mutation, diagnostics, prognostics, and tumor-infiltrating lymphocytes (TILs) from different types of cancer tissues with corresponding healthy tissues. In vitro studies for cordycepin (CD), N6-(2-hydroxyethyl) adenosine (HEA), N6, N6-dimethyladenosine (m62A) and 5'-uridylic acid (UMP) on BSG expression were also conducted. RESULTS: We revealed that BSG is conserved among different species, and significantly upregulated in seven tumor types, including ACC, ESCA, KICH, LIHC, PAAD, SKCM and THYM, compared with matched normal tissues, highlighting the susceptibility of these cancer patients to SARS-CoV-2 invasion, COVID-19 severity and progression of malignant cancers. High expression in BSG was significantly correlated with a short OS in LGG, LIHC and OV patients, but a long OS in KIRP patients. Methylation statuses in the BSG promoter were significantly higher in BRCA, HNSC, KIRC, KIRP, LUSC, PAAD, and PRAD tumor tissues, but lower in READ. Four CpGs in the BSG genome were identified as potential DNA methylation biomarkers which could be used to predict malignant cancers from normal individuals. Furthermore, a total of 65 mutation types were found, in which SARC showed the highest mutation frequency (7.84%) and THYM the lowest (0.2%). Surprisingly, both for disease-free and progression-free survival in pan-cancers were significantly reduced after BSG mutations. Additionally, a correlation between BSG expression and immune lymphocytes of CD56bright natural killer cell, CD56dim natural killer cell and monocytes, MHC molecules of HLA-A, HLA-B, HLA-C and TAPBP, immunoinhibitor of PVR, PVRL2, and immunostimulators of TNFRSF14, TNFRSF18, TNFRSF25, and TNFSF9, was revealed in most cancer types. Moreover, BSG expression was downregulated by CD, HEA, m62A or UMP in cancer cell lines, suggesting therapeutic potentials for interfering entry of SARS-CoV-2. CONCLUSIONS: Altogether, our study highlights the values of targeting BSG for diagnostic, prognostic and therapeutic strategies to fight malignant cancers and COVID-19. Small molecules CD, HEA, m62A and UMP imply therapeutic potentials in interfering with entry of SARS-CoV-2 and progression of malignant cancers.


Assuntos
COVID-19 , Neoplasias , Humanos , COVID-19/diagnóstico , COVID-19/genética , Teste para COVID-19 , Expressão Gênica , Genes MHC Classe I , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Prognóstico , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...